The Electromagnetic Energy Momentum Tensor and its Uniqueness

DAVID LOVELOCK

Department of Apptied Mathematics, University of Waterloo, Ontario, Canada

Received: 18August 1973

Abstract

The uniqueness of the electromagnetic energy momentum tensor is established under general conditions.

1. Introduction

In electromagnetic field theory and in general relativity the role played by the electromagnetic energy momentum tensort

$$
T^{ij} = -F^{ih}F^j{}_h + \frac{1}{4}g^{ij}(F^{ab}F_{ab})
$$
\n(1.1)

where $\frac{1}{k}$

$$
F_{ij} = \psi_{i,j} - \psi_{j,i} \tag{1.2}
$$

and ψ_i is an arbitrary vector field, is well known. Some of the more important properties which *T i/enjoys* are

(a) T^{ij} is symmetric, i.g.

$$
T^{ij} = T^{ji};\tag{1.3}
$$

(b) whenever the source-free MaxwelI equations §

$$
F^{ij}_{\ \ |j} = 0 \tag{1.4}
$$

 $+$ Latin indices run from 1 to *n. g_{ij}* is the metric of an *n*-dimensional Riemannian space. The summation convention is used throughout.

 \ddagger A comma denotes partial differentiation.

§ A vertical bar denotes covariant differentiation. The second set of Maxwell's equations $F_{ij}|k + F_{ki}|j + F_{jk}|i = 0$ are identically satisfied by virtue of (1.2).

Copyright © 1974 Plenum Publishing Company Limited. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, microfilming, recording or otherwise, without
written permission of Plenum Publishing Company

are satisfied, the divergence of T^{ij} , i.e. T^{ij} _{ij}, vanishes by virtue of the identity

$$
T^{ij}_{\ \ |j} = F^{ih} F_h^{\ j}{}_{|j} \tag{1.5}
$$

(c) T^{ij} is trace-free in four dimensions, i.e.

$$
g_{ii}T^{ij}=0 \qquad \text{for } n=4. \tag{1.6}
$$

Guided by the properties (1.3) and (1.5) the present work is devoted to establishing that in *n*-dimensions T^{ij} given by (1.1) is essentially the unique sotution to the following problem. To find all tensors *Bii* for which

(i)
$$
B^{ij}
$$
 is a concomitant of g_{ab} , ψ_a and $\psi_{a,b}$, i.e.
\n
$$
B^{ij} = B^{ij}(g_{ab}; \psi_a; \psi_{a,b}); \qquad (1.7)
$$

(ii) B^{ij} is symmetric, i.e.

$$
B^{ij} = B^{ji};\tag{1.8}
$$

(iii) B^{ij} _i, vanishes whenever (1.4) is valid in the sense that \dagger

$$
B^{ij}_{\ \ |j} = \alpha^{ih} F_h^{\ j}{}_{|j} \,. \tag{1.9}
$$

where α^{ih} is a tensor and a concomitant of g_{ab} , ψ_a and $\psi_{a,b}$, i.e.

$$
\alpha^{ih} = \alpha^{ih}(g_{ab}; \psi_a; \psi_{a,b}). \tag{1.10}
$$

Alternative conditions under which $T^{\ddot{\eta}}$ is determined uniquely have been discussed by Fock (1964, p. 411) and Collinson (1969).

2. The Uniqueness of the Electromagnetic Energy Momentum Tensor

In this section we shall find all tensors B^{ij} which satisfy (1.7) , (1.8) and (1.9) . In view of the fact that B^{ij} and α^{ih} are tensor concomitants certain invariance identities must be satisfied (Rund, 1966), viz.

$$
\frac{\partial B^{ij}}{\partial \psi_{r,s}} + \frac{\partial B^{ij}}{\partial \psi_{s,r}} = 0, \qquad (2.1)
$$

$$
\delta_r^l B^{sm} + \delta_r^m B^{ls} + 2 \frac{\partial B^{lm}}{\partial g_{sk}} g_{rk} + \frac{\partial B^{lm}}{\partial \psi_s} \psi_r + \frac{\partial B^{lm}}{\partial \psi_{s,k}} F_{rk} = 0, \tag{2.2}
$$

$$
\frac{\partial \alpha^{ij}}{\partial \psi_{r,s}} + \frac{\partial \alpha^{ij}}{\partial \psi_{s,r}} = 0, \qquad (2.3)
$$

and

$$
\delta_r^l \alpha^{sm} + \delta_r^m \alpha^{ls} + 2 \frac{\partial \alpha^{lm}}{\partial g_{sk}} g_{rk} + \frac{\partial \alpha^{lm}}{\partial \psi_s} \psi_r + \frac{\partial \alpha^{lm}}{\partial \psi_{s,k}} F_{rk} = 0, \tag{2.4}
$$

 \uparrow Clearly (1.7) guarantees that B^{ij} is at worst linear in $F_{ij,k}$.

Written out in detail, (1.9) reads

$$
\frac{\partial B^{ij}}{\partial \psi_{a,b}} \psi_{a,bj} + \frac{\partial B^{ij}}{\partial \psi_a} \psi_{a,j} + \frac{\partial B^{ij}}{\partial g_{ab}} g_{ab,j} + \Gamma^i_{aj} B^{aj} + \Gamma^j_{aj} B^{ia}
$$

$$
= \alpha^{ih} g^{jk} \left[\psi_{h,kj} - \psi_{k,hj} - \Gamma^a_{hj} F_{ak} - \Gamma^a_{kj} F_{ha} \right]. \quad (2.5)
$$

Differentiation of (2.5) with respect to $\psi_{r, st}$ yields

$$
\frac{1}{2} \left(\frac{\partial B^{it}}{\partial \psi_{r,s}} + \frac{\partial B^{is}}{\partial \psi_{r,t}} \right) = \alpha^i r g^{st} - \frac{1}{2} \alpha^{is} g^{rt} - \frac{1}{2} \alpha^{it} g^{rs},\tag{2.6}
$$

while differentiation of (2.5) with respect to $g_{rs,t}$ gives

$$
\frac{\partial B^{it}}{\partial g_{rs}} + \frac{1}{2} g^{is} B^{rt} + \frac{1}{2} g^{ir} B^{st} - \frac{1}{2} g^{it} B^{rs} + \frac{1}{2} g^{rs} B^{it}
$$
\n
$$
= \frac{1}{2} \alpha^{ir} F^{ts} + \frac{1}{2} \alpha^{is} F^{tr} + \frac{1}{2} \alpha^{ik} F^{s}{}_{k} g^{rt} + \frac{1}{2} \alpha^{ik} F^{r}{}_{k} g^{st} - \frac{1}{2} \alpha^{ik} F^{t}{}_{k} g^{rs}. \quad (2.7)
$$

If (2.6) and (2.7) are substituted in (2.5) we see that

$$
\frac{\partial B^U}{\partial \psi_a} \psi_{a,j} = 0. \tag{2.8}
$$

Consequently (2.6) , (2.7) and (2.8) are equivalent to (2.5) .

Differentiation of (2.8) with respect to $\psi_{r,s}$ yields

$$
\frac{\partial^2 B^{ij}}{\partial \psi_{r,s} \partial \psi_a} \psi_{a,j} + \frac{\partial B^{is}}{\partial \psi_r} = 0.
$$
 (2.9)

By virtue of (2.1) , (2.9) implies that

$$
\frac{\partial B^{is}}{\partial \psi_r} + \frac{\partial B^{ir}}{\partial \psi_s} = 0,
$$

from which, in view of (1.8), it is easily established that

$$
\frac{\partial B^{is}}{\partial \psi_r} = 0
$$

i.e.
$$
B^{is} = B^{is}(g_{ab}; \psi_{a,b}).
$$
 (2.10)

We now turn to an analysis of (2.6) . In (2.6) we interchange *i* with *s*, and also i with t to find

$$
\frac{1}{2} \left(\frac{\partial B^{st}}{\partial \psi_{r,i}} + \frac{\partial B^{is}}{\partial \psi_{r,i}} \right) = \alpha^{sr} g^{it} - \frac{1}{2} \alpha^{st} g^{rt} - \frac{1}{2} \alpha^{st} g^{ri},\tag{2.11}
$$

and

$$
\frac{1}{2} \left(\frac{\partial B^{it}}{\partial \psi_{r,s}} + \frac{\partial B^{ts}}{\partial \psi_{r,i}} \right) = \alpha^{tr} g^{si} - \frac{1}{2} \alpha^{ts} g^{ri} - \frac{1}{2} \alpha^{ti} g^{rs} \,, \tag{2.12}
$$

respectively. Adding (2.6) and (2.11) and subtracting (2.12) , we see that

$$
\frac{\partial B^{is}}{\partial \psi_{r,t}} = \alpha^{i r} g^{s t} - D^{i s} g^{r t} + \frac{1}{2} (\alpha^{t i} - \alpha^{t t}) g^{r s} + \alpha^{s r} g^{i t} + \frac{1}{2} (\alpha^{t s} - \alpha^{s t}) g^{r i} - \alpha^{t r} g^{s i}
$$
\n(2.13)

where

$$
D^{is} = \frac{1}{2}(\alpha^{is} + \alpha^{si})
$$

In (2.13) we interchange r and t and make use of (2.1) to find

$$
D^{ir}g^{st} + D^{it}g^{rs} + D^{rs}g^{it} + D^{st}g^{ri} - 2D^{is}g^{rt} - 2D^{rt}g^{is} = 0.
$$
 (2.14)

Multiplication of (2.14) by g_{ir} yields

$$
(n-2)D^{st} + g^{st}(g_{ir}D^{ir}) = 0,
$$
\n(2.15)

from which, for $n \neq 2$, it follows that

$$
D^{st} = 0
$$

i.e.
$$
\alpha^{st} = -\alpha^{ts}.
$$
 (2.16)

Restricting our considerations to the case $n \ge 3$, we see that, in view of (2.16), (2.13) reduces to

$$
\frac{\partial B^{is}}{\partial \psi_{r,t}} = \alpha^{ir} g^{st} + \alpha^{ti} g^{rs} + \alpha^{sr} g^{it} + \alpha^{ts} g^{ri} + \alpha^{rt} g^{si}.
$$
 (2.17)

If we multiply (2.17) by g_{ri} we see that

$$
\frac{\partial B_i^s}{\partial \psi_{i,t}} = (n-1)\alpha^{ts},
$$

which, by virtue of (2.10), implies that

$$
\alpha^{ts} = \alpha^{ts}(g_{ab}; \psi_{a,b}). \tag{2.18}
$$

We now differentiate (2.17) with respect to $\psi_{a,b}$ and find

$$
\frac{\partial^2 B^{is}}{\partial \psi_{a,b} \partial \psi_{r,t}} = \alpha^{ir;ab} g^{st} + \alpha^{ti;ab} g^{rs} + \alpha^{sr;ab} g^{it} + \alpha^{ts;ab} g^{ri} + \alpha^{rt;ab} g^{si}
$$
\n(2.19)

where

$$
\alpha^{ir;ab} = \partial \alpha^{ir} / \partial \psi_{a,b}.
$$
 (2.20)

62

From (2.3) and (2.16) we clearly have

$$
\alpha^{ir;ab} = -\alpha^{ri;ab} = -\alpha^{ir;ba}.
$$

The equation obtained from (2.19) by interchanging a with r and b with t is subtracted from (2.19) to give

$$
\alpha^{ir;ab}g^{st} + \alpha^{ti;ab}g^{rs} + \alpha^{sr;ab}g^{it} + \alpha^{ts;ab}g^{ri} + \alpha^{rt;ab}g^{si}
$$

=
$$
\alpha^{ia;rt}g^{sb} + \alpha^{bi;rt}g^{as} + \alpha^{sa;rt}g^{ib} + \alpha^{bs;rt}g^{ai} + \alpha^{ab;rt}g^{si}.
$$
 (2.21)

We multiply (2.21) by g_{st} and let

$$
\mu^{br} = \alpha^{bs;rt} g_{st}
$$

to find

$$
(n-1)\alpha^{ir;ab} + \alpha^{ia;br} + \alpha^{bi;ar} + \alpha^{abi;ir} = \mu^{br}g^{ia} - \mu^{ar}g^{ib}.
$$
 (2.22)

Multiplication of (2.22) by *gib* thus yields

$$
\mu^{ra} = \mu^{ar}.\tag{2.23}
$$

Multiplication of (2.22) by g_{rb} , account being taken of (2.23), gives rise to

$$
\mu^{ar} = \lambda g^{ar} \tag{2.24}
$$

where

$$
\lambda = \frac{1}{n} \left(g_{ij} \mu^{ij} \right) = \lambda \left(g_{ab} ; \psi_{a,h} \right),\tag{2.25}
$$

in view of (2.18).

When (2.24) is substituted in (2.22) we find

$$
(n-1)\alpha^{ir;ab} + \alpha^{ia;br} + \alpha^{bi;ar} + \alpha^{abi;ir} = \lambda(g^{br}g^{ia} - g^{ar}g^{ib}).
$$
 (2.26)

In (2.26) we cycle on *abi* to find

$$
\frac{1}{3}(n-1)[\alpha^{ir;ab} + \alpha^{ar;bi} + \alpha^{br;ia}] + [\alpha^{ia;br} + \alpha^{bi;ar} + \alpha^{abi;ir}] = 0.(2.27)
$$

We subtract (2.27) from (2.26) and see that

$$
\frac{1}{3}(n-1)[2\alpha^{ir;ab} - \alpha^{ar;bi} - \alpha^{br;ia}] = \lambda(g^{br}g^{ia} - g^{ar}g^{ib}).
$$
 (2.28)

The equation obtained from (2.28) by interchanging a with i is added to (2.28) to yield

$$
(n-1)(\alpha^{ir;ab} + \alpha^{ar;ib}) = \lambda(2g^{br}g^{ai} - g^{ar}g^{ib} - g^{ir}g^{ab}).
$$
 (2.29)

The equation obtained from (2.29) by interchanging *i* with *r* is subtracted from (2.29) to give

$$
\frac{1}{3}(n-1)\left[2\alpha^{ir;ab} + \alpha^{ar;ib} + \alpha^{ai;br}\right] = \lambda(g^{br}g^{ai} - g^{arg}b^i). \tag{2.30}
$$

A comparison of (2.28) and (2.30) thus shows that

$$
\alpha^{ai;br} = \alpha^{br;ai}
$$

which, when substituted in (2.27), yields

$$
(n+2)(\alpha^{ir;ab} + \alpha^{ar;bi} + \alpha^{br;ia}) = 0.
$$
 (2.31)

(2.31) is now substituted in (2.26) and gives rise to

$$
\alpha^{ir;ab} = \frac{\lambda}{n-1} \left(g^{br} g^{ai} - g^{ar} g^{ib} \right). \tag{2.32}
$$

We differentiate (2.32) with respect to $\psi_{c,d}$ and note (2.20) to find

$$
\frac{\partial \lambda}{\partial \psi_{c,d}}\left(g^{br}g^{ai}-g^{ar}g^{ib}\right)=\frac{\partial \lambda}{\partial \psi_{a,b}}\left(g^{dr}g^{ci}-g^{cr}g^{id}\right).
$$

Multiplication of the latter by *gaigrb* yields

$$
(n-2)(n+1)\frac{\partial\lambda}{\partial\psi_{c,d}}=0,
$$

so that, by (2.25)

$$
\lambda = \lambda(g_{ab})
$$

in which case (Lovelock, 1969)

$$
\lambda = (n-1)a \tag{2.33}
$$

where a is a constant.

Substitution of (2.33) in (2.32) and integration yields

$$
\alpha^{ir} = aF^{ir} + \beta^{ir} \tag{2.34}
$$

where β^{ir} is an antisymmetric tensor and, by (2.18),

$$
\beta^{ir} = \beta^{ir}(g_{ab}).
$$

Thus, for $n > 2$ (Lovelock, 1969)

$$
\beta^{ir}=0\,,
$$

in which case (2.34) reduces to

$$
\alpha^{ir} = aF^{ir}.\tag{2.35}
$$

We now multiply (2.7) by g_{rs} and use (2.35) to find

$$
\frac{\partial B^{it}}{\partial g_{rs}} g_{rs} = \frac{1}{2} g^{it} B - \left(1 + \frac{n}{2} \right) B^{it} + \frac{a}{2} (4 - n) F^{ir} F^t \,, \tag{2.36}
$$

where

$$
B = g_{it} B^{it}.
$$

Also from (2.17) and (2.35) we have

$$
\frac{\partial B^{it}}{\partial \psi_{r,s}} F_{rs} = a(g^{it} F^{ab} F_{ab} - 4F^{ir} F^t{}_r). \tag{2.37}
$$

However, from (2.2) and (2.10),

$$
B^{it} = -\frac{\partial B^{it}}{\partial g_{rs}} g_{rs} - \frac{1}{2} \frac{\partial B^{it}}{\partial \psi_{r,s}} F_{rs} ,
$$

which, by (2.36) and (2.37) reduces to

$$
B^{it} = \frac{1}{n} g^{it} B + a \left[\frac{1}{n} g^{it} F^{ab} F_{ab} - F^{ir} F^t{}_r \right].
$$
 (2.38)

However, from (2.17) and (2.35) , we see that

$$
\frac{\partial B}{\partial \psi_{r,t}} = a(4-n)F^{tr},
$$

from which it can be shown that

$$
B = -a\left(1 - \frac{n}{4}\right)F^{tr}F_{tr} + nb \tag{2.39}
$$

where b is a constant. Substitution of (2.39) in (2.38) gives

$$
B^{it} = g^{it}b + a\left[\frac{1}{4}g^{it}F^{cb}F_{cb} - F^{ir}F^{t}{}_{r}\right].
$$
 (2.40)

We have thus proved the

Theorem: For
$$
n > 2
$$
 the only tensor which satisfies (1,7), (1.8) and (1.9) is

$$
B^{it} = aT^{it} + bg^{it}
$$

where a and b are constants.

Acknowledgements

This work was supported in part by a grant from the National Research Council of Canada.

References

Collinson, C. D. (1969). *Proceedings of the Cambridge Philosophical Society,* 66, 437.

Fock, V. (1964). *The Theory of Space Time and Gravitation,* 2nd revised ed. Pergamon, New York.

Lovelock, D. (1969). *Archives for Rational Mechanics and Analysis,* 33, 54.

Rund, H. (1966). *Abhandlungen aus dem Mathematisehen Seminar, Universitdt Hamburg,* 29, 243.